Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol

Author:

Bharany Salil,Sharma Sandeep,Badotra Sumit,Khalaf Osamah IbrahimORCID,Alotaibi YouseefORCID,Alghamdi Saleh,Alassery Fawaz

Abstract

A Flying Ad-hoc network constitutes many sensor nodes with limited processing speed and storage capacity as they institute a minor battery-driven device with a limited quantity of energy. One of the primary roles of the sensor node is to store and transmit the collected information to the base station (BS). Thus, the life span of the network is the main criterion for the efficient design of the FANETS Network, as sensor nodes always have limited resources. In this paper, we present a methodology of an energy-efficient clustering algorithm for collecting and transmitting data based on the Optimized Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. The selection of CH is grounded on the new optimized threshold function. In contrast, LEACH is a hierarchical routing protocol that randomly selects cluster head nodes in a loop and results in an increased cluster headcount, but also causes more rapid power consumption. Thus, we have to circumvent these limitations by improving the LEACH Protocol. Our proposed algorithm diminishes the energy usage for data transmission in the routing protocol, and the network’s lifetime is enhanced as it also maximizes the residual energy of nodes. The experimental results performed on MATLAB yield better performance than the existing LEACH and Centralized Low-Energy Adaptive Clustering Hierarchy Protocol in terms of energy efficiency per unit node and the packet delivery ratio with less energy utilization. In addition, the First Node Death (FND) is also meliorated when compared to the LEACH and LEACH-C protocols.

Funder

Taif University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy and throughput aware adequate routing for wireless sensor networks using integrated game theory method;Scientific Reports;2024-09-09

2. QoS-based energy-efficient hybrid routing protocols in RSU assisted VANET using clustering mechanism;International Journal of Electronics;2024-06-10

3. Monitoring of Fire within Forest Using Advanced Digital Differential Based Neural Network;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

4. Analyzing energy efficiency of flying objects in Wireless Sensor and Mobile Ad Hoc Networks;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09

5. Renewable Energy Efficiency of Unmanned Aerial Vehicles Operating with Wireless Sensor Networks and Mobile Ad Hoc Networks;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3