Physical Trace Gas Identification with the Photo Electron Ionization Spectrometer (PEIS)

Author:

Doll Theodor1,Fuenzalida Victor M.2ORCID,Schütte Helmut3,Gaßmann Stefan3,Velasco-Velez Juan J.4,Köhler Robert5ORCID,Kontschev Alex6,Haas Thomas6ORCID,Ungethüm Bert7ORCID,Walte Andreas7,Oberröhrmann Jonas8,Onken Adrian1,Philipp Kasimir M.8,Nguyen Minh-Hai1ORCID,Lenarz Thomas1ORCID,Hassel Achim Walter9ORCID,Viöl Wolfgang5ORCID

Affiliation:

1. Biomaterial Engineering, ENT, Hannover Medical School, 30625 Hannover, Germany

2. Laboratorio de Superficies y Nanomateriales, Departamento de Física, FCFM, Universidad de Chile, Av. Blanco Encalada 2008, Santiago de Chile 8370448, Chile

3. Department of Engineering, Jade University of Applied Sciences, 26389 Wilhelmshaven, Germany

4. ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain

5. Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen, Germany

6. Adlantis GmbH, 44263 Dortmund, Germany

7. Airsense Analytics GmbH, 19061 Schwerin, Germany

8. Eyyon/DBT GmbH, 97070 Wuerzburg, Germany

9. Institute of Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, 4040 Linz, Austria

Abstract

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

Funder

“Hearing 4 All” DFG EXC 2177

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3