Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries

Author:

Xie Zhibo1,Qu Yongru1,Kong Fuwei1,Zhao Ruizheng2,Wang Xianfen1

Affiliation:

1. Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

2. Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Vanadium-based cathodes are promising for aqueous zinc-ion batteries (ZIBs) due to the large interlayer distance. However, the poor stability of electrode materials due to the dissolution effects has severely hindered the commercial development. To address this challenge, we propose an in situ NH4+ pre-intercalation strategy to enhance the electrochemical performance of Na0.76V6O15 (NaVO), thereby optimizing its structural stability and ionic conductivity. Moreover, NH4+ pre-intercalation introduced a large number of oxygen vacancies and defects into the material, causing the reduction of V5+ to V4+. This transformation suppresses the dissolution and enhances its conductivity, thereby significantly improving the electrochemical performance. This modified NaNVO cathodes deliver a higher capacity of 456 mAh g−1 at 0.1 A g−1, with a capacity retention of 88% after 140 cycles and a long lifespan, maintaining 99% of its initial capacity after 2300 cycles. This work provided a new way to optimize the cathode for aqueous zinc-ion batteries.

Funder

Natural Science Foundation of China

Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education

Excellent Youth Foundation of Henan Province

Talent Development Funding Project of Shanghai

Key Research Projects of Higher Education Institutions of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3