Glucose Hydrogenolysis into 1,2-Propanediol Using a Pt/deAl@Mg(OH)2 Catalyst: Expanding the Application of a Core–Shell Structured Catalyst

Author:

Wang ShizhuoORCID,Jiang Jikang,Gu Minyan,Song Yuanbo,Zhao Jiang,Shen Zheng,Zhou Xuefei,Zhang Yalei

Abstract

To substitute fossil resources, it is necessary to investigate the conversion of biomass into 1,2-propanediol (1,2-PDO) as a high-value-added chemical. The Pt/deAl-Beta@Mg(OH)2 catalytic system is designed to obtain a higher 1,2-PDO production yield. The optimal yield of 1,2-PDO is 34.1%. The unique shell-core structure of the catalyst demonstrates stability, with a catalytic yield of over 30% after three times of use. The primary process path from glucose to 1,2-PDO, glucose-hexitol-1,2-PDO, is speculated by the experiments of intermediate product selectivity. The alkaline catalytic mechanism of the reaction process is elucidated by studying catalyst characterization and analyzing different time courses of products. The introduction of Mg(OH)2 improves the target yield by promoting the isomerization from glucose to fructose and retro-aldol condensation (RAC) conversion, with pseudo-yield increases of 76.1% and 42.1%, respectively. By studying the processes of producing lactic acid and 1,2-PDO from glucose, the glucose hydrogenolysis flow chart is improved, which is of great significance for accurately controlling 1,2-PDO production in industrial applications. The metal, acid, and alkali synergistic catalytic system constructed in this paper can provide a theoretical basis and route reference for applying biomass conversion technology in practice.

Funder

National Natural Science Foundation of China

Shanghai Science & Technology Committee

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3