Evaluation the Performance of Several Gridded Precipitation Products over the Highland Region of Yemen for Water Resources Management

Author:

AL-Falahi Ali HamoudORCID,Saddique Naeem,Spank Uwe,Gebrechorkos Solomon H.ORCID,Bernhofer Christian

Abstract

Management of water resources under climate change is one of the most challenging tasks in many arid and semiarid regions. A major challenge in countries, such as Yemen, is the lack of sufficient and long-term climate data required to drive hydrological models for better management of water resources. In this study, we evaluated the accuracy of accessible satellite and reanalysis-based precipitation products against observed data from Al Mahwit governorate (highland region, Yemen) during 1998–2007. Here, we evaluated the accuracy of the Climate Hazards Group Infrared Precipitation with Station (CHIRPS) data, National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Tropical Rainfall Measuring Mission (TRMM 3B42), Unified Gauge-Based Analysis of Global Daily Precipitation (CPC), and European Atmospheric Reanalysis (ERA-5). The evaluation was performed on daily, monthly, and annual time steps by directly comparing the data from each single station with the data from the nearest grid box for each product. At a daily timescale, CHIRPS captures the daily rainfall characteristics best, such as the number of wet days, with average deviation from wet durations around 11.53%. TRMM 3B42 is the second-best performing product for a daily estimate with an average deviation of around 34.7%. However, CFSR (85.3%) and PERSIANN-CDR (103%) and ERA-5 (−81.13%) show an overestimation and underestimation of wet days and do not reflect rainfall variability of the study area. Moreover, CHIRPS is the most accurate gridded product on a monthly basis with high correlation and lower bias. The average monthly correlation between the observed and CHIRPS, TRMM 3B42, PERSIANN-CDR, CPC, ERA-5, and CFSR is 0.78, 0.56, 0.53, 0.15, 0.20, and 0.51, respectively. The average monthly bias is −2.9, −5.25, 7.35, −25.29, −24.96, and 16.68 mm for CHIRPS, TRMM 3B42, PERSIANN-CDR, CPC, ERA-5, and CFSR, respectively. CHIRPS displays the spatial distribution of annual rainfall pattern well with percent bias (Pbias) of around −8.68% at the five validation points, whereas TRMM 3B42, PERSIANN-CDR, and CFSR show a deviation of greater than 15.30, 22.90, and 66.21%, respectively. CPC and ERA-5 show Pbias of about −88.6% from observed data. Overall, in absence of better data, CHIRPS data can be used for hydrological and climate change studies on the highland region of Yemen where precipitation is often episodical and measurement records are spatially and temporally limited.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference91 articles.

1. Precipitation Analysis and Water Resource of Wadi Siham Basin, Yemen;Ward;Geografi,2020

2. Yemen between the Impact of the Climate Change and the Ongoing Saudi-Yemen War: A Real Tragedy;Mohamed,2017

3. Mapping Climate Change Impacts on Smallholder Agriculture in Yemen Using GIS Modeling Approaches;Wilby,2013

4. Vegetation patterns and floristic composition of Yemen;Al-Hawshabi;Curr. Life Sci.,2015

5. Water scarcity and climate change adaptation for Yemen's vulnerable communities

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3