Efficient Water Quality Prediction Using Supervised Machine Learning

Author:

Ahmed Umair,Mumtaz RafiaORCID,Anwar Hirra,Shah Asad A.,Irfan Rabia,García-Nieto JoséORCID

Abstract

Water makes up about 70% of the earth’s surface and is one of the most important sources vital to sustaining life. Rapid urbanization and industrialization have led to a deterioration of water quality at an alarming rate, resulting in harrowing diseases. Water quality has been conventionally estimated through expensive and time-consuming lab and statistical analyses, which render the contemporary notion of real-time monitoring moot. The alarming consequences of poor water quality necessitate an alternative method, which is quicker and inexpensive. With this motivation, this research explores a series of supervised machine learning algorithms to estimate the water quality index (WQI), which is a singular index to describe the general quality of water, and the water quality class (WQC), which is a distinctive class defined on the basis of the WQI. The proposed methodology employs four input parameters, namely, temperature, turbidity, pH and total dissolved solids. Of all the employed algorithms, gradient boosting, with a learning rate of 0.1 and polynomial regression, with a degree of 2, predict the WQI most efficiently, having a mean absolute error (MAE) of 1.9642 and 2.7273, respectively. Whereas multi-layer perceptron (MLP), with a configuration of (3, 7), classifies the WQC most efficiently, with an accuracy of 0.8507. The proposed methodology achieves reasonable accuracy using a minimal number of parameters to validate the possibility of its use in real time water quality detection systems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3