Combining Dynamic Hyperinflation with Dead Space Volume during Maximal Exercise in Patients with Chronic Obstructive Pulmonary Disease

Author:

Chuang Ming-Lung

Abstract

Physiological dead space volume (VD) and dynamic hyperinflation (DH) are two different types of abnormal pulmonary physiology. Although they both involve lung volume, their combination has never been advocated, and thus their effect and implication are unclear. This study aimed (1) to combine VD and DH, and (2) investigate their relationship and clinical significance during exercise, as well as (3) identify a noninvasive variable to represent the VD fraction of tidal volume (VD/VT). Forty-six male subjects with chronic obstructive pulmonary disease (COPD) and 34 healthy male subjects matched for age and height were enrolled. Demographic data, lung function, and maximal exercise were investigated. End-expiratory lung volume (EELV) was measured for the control group and estimated for the study group using the formulae reported in our previous study. The VD/VT ratio was measured for the study group, and reference values of VD/VT were used for the control group. In the COPD group, the DHpeak/total lung capacity (TLC, DHpeak%) was 7% and the EELVpeak% was 70%. After adding the VDpeak% (8%), the VDDHpeak% was 15% and the VDEELVpeak% was 78%. Both were higher than those of the healthy controls. In the COPD group, the VDDHpeak% and VDEELVpeak% were more correlated with dyspnea score and exercise capacity than that of the DHpeak% and EELV%, and had a similar strength of correlation with minute ventilation. The VTpeak/TLC (VTpeak%), an inverse marker of DH, was inversely correlated with VD/VT (R2 ≈ 0.50). Therefore, we recommend that VD should be added to DH and EELV, as they are physiologically meaningful and VTpeak% represents not only DH but also dead space ventilation. To obtain VD, the VD/VT must be measured. Because obtaining VD/VT requires invasive arterial blood gases, further studies on noninvasive predicting VD/VT is warranted.

Publisher

MDPI AG

Subject

General Medicine

Reference43 articles.

1. Distribution of pulmonary ventilation and perfusion;Lumb,2000

2. Physiology of exercise;Wasserman,2005

3. Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance

4. Hyperinflation, dyspnea, and exercise inteolerance in in chronic obstructive pulmonary disease;O’Donnell;Am. J. Respir. Crit. Care Med.,2006

5. Dynamic Hyperinflation and Exercise Intolerance in Chronic Obstructive Pulmonary Disease

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3