Effects of Storage Conditions on Degradation of Chlorophyll and Emulsifying Capacity of Thylakoid Powders Produced by Different Drying Methods

Author:

Östbring KarolinaORCID,Sjöholm Ingegerd,Rayner MarilynORCID,Erlanson-Albertsson Charlotte

Abstract

Thylakoid membranes isolated from spinach have previously been shown to inhibit lipase/co-lipase and prolong satiety in vivo. There is a need to develop thylakoid products that not only have the desired characteristics and functionality after processing, but also are stable and provide equivalent effect on appetite over the promised shelf life. The aim of the present study was therefore to evaluate how the thylakoid powders’ characteristics and functionality were affected by moisture during storage. Thylakoids produced by drum-drying, spray-drying, and freeze-drying were incubated in controlled atmosphere with different relative humidity (10 RH%, 32 RH%, 48 RH% and 61 RH%) for 8 months. The water content in all powders was increased during storage. The water absorption was moisture-dependent, and the powders were considered hygroscopic. Relative humidity showed a definite influence on the rate of chlorophyll degradation and loss of green color in thylakoid powders after storage which correlated with impaired emulsifying capacity. Spray-dried powder had the overall highest chlorophyll content and emulsifying capacity at all RH-levels investigated. Spray drying was therefore considered the most suitable drying method yielding a powder with best-maintained functionality after storage. The results can be applied towards quality control of high-quality functional foods with appetite suppressing abilities.

Funder

VINNOVA

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3