Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data

Author:

Lobas Anna A.1ORCID,Solovyeva Elizaveta M.1ORCID,Levitsky Lev I.1,Goncharov Anton O.2ORCID,Lyssuk Elena Y.3ORCID,Larin Sergey S.3ORCID,Moshkovskii Sergei A.24ORCID,Gorshkov Mikhail V.1ORCID

Affiliation:

1. V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia

2. Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia

3. Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia

4. Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia

Abstract

Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3