sFgl2-Treg Positive Feedback Pathway Protects against Atherosclerosis

Author:

An Tianhui1,Guo Mengyuan2,Fan Cheng13,Huang Shiyuan1,Liu Hui1,Liu Kun2,Wang Zhaohui1

Affiliation:

1. Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

2. Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

3. Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA

Abstract

Soluble fibrinogen-like protein 2 (sFgl2), a novel effector of regulatory T cells (Tregs), has been demonstrated to have potent immunosuppressive functions. Multiple studies indicate that Tregs could exert important atheroprotective effects, but their numbers gradually decrease during atherogenesis. The receptor of sFgl2 can be expressed on Treg precursor cells, while the role of sFgl2 on Treg differentiation and atherosclerosis progression remains unclear. Firstly, we detected that the sFgl2 was decreased in humans and mice with atherosclerotic diseases and was especially lower in their vulnerable plaques. Then, we used both Adeno-associated virus-sFgl2 (AAV-sFgl2)-injected ApoE-/- mice, which is systemic overexpression of sFgl2, and sFgl2TgApoE-/- bone marrow cells (BMC)-transplanted ApoE-/- mice, which is almost immune-system-specific overexpression of sFgl2, to explore the role of sFgl2 in atherosclerosis. Our experiment data showed that AAV-sFgl2 and BMT-sFgl2 could reduce atherosclerotic area and enhance plaque stability. Mechanistically, sFgl2 increases the abundance and immunosuppressive function of Tregs, which is partly mediated by binding to FcγRIIB receptors and phosphorylating Smad2/3. Collectively, sFgl2 has an atheroprotective effect that is mainly achieved by forming a positive feedback pathway with Treg. sFgl2 and Treg could synergistically protect against atherosclerosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3