Antiproliferative Activity of Antibiotics through DNA Binding Mechanism: Evaluation and Molecular Docking Studies

Author:

Magklaras Alexandros-Dimitrios C.1,Banti Christina N.1ORCID,Hadjikakou Sotiris K.1ORCID

Affiliation:

1. Laboratory of Biological Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Abstract

The antiproliferative activity of three antibiotics clinically use, was studied through DNA inhibition mechanisms, ex vivo, in silico and in vitro. The ex vivo interaction of DNA with ciprofloxacin hydrochloride (CIP·HCl), penicillin G sodium salt (PEN·Na), and tetracycline hydrochloride (TC·HCl) was determined by UV-Vis spectra and viscosity measurements. Furthermore, their binding constants (Kb) toward CT-DNA were calculated (Kb = (2.8 ± 0.6) × 104 (CIP·HCl), (0.4 ± 0.1) × 104 (PEN·Na) and (6.9 ± 0.3) × 104 (TC·HCl) Μ−1). Docking studies on the binding interactions of antibiotics with DNA were performed to rationalize the ex vivo results. The in vitro antiproliferative activity of the antibiotics was evaluated against human breast adenocarcinoma (MCF-7) cells (IC50 values: 417.4 ± 28.2 (CIP·HCl), >2000 (PEN·Na) and 443.1 ± 17.2 (TC·HCl) μΜ). Cell cycle arrest studies confirmed the apoptotic type of MCF-7 cells. The toxicity of the studied agents was in vitro tested against human fetal lung fibroblast cells (MRC-5). The results are compared with the corresponding one for doxorubicin (DOX). Despite their low binding affinity to DNA (Kb) or their different mode of interaction, TC·HCl (anthracycline) or CIP·HCl (quinolones), exhibit notable antiproliferative activity and low toxicity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference37 articles.

1. Cancer Statistics;Siegel;CA Cancer J. Clin.,2022

2. Saeidnia, S. (2015). Anticancer Antibiotics, Springer. Chapter 4.

3. Badal, S., and Delgoda, R. (2017). Pharmacognosy, Academic Press.

4. DNA and Its Associated Processes as Targets for Cancer Therapy;Hurley;Nat. Rev. Cancer,2002

5. Ciprofloxacin Conjugated to Diphenyltin(IV): A Novel Formulation with Enhanced Antimicrobial Activity;Chrysouli;Dalton Trans.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3