Interaction between Long Noncoding RNAs and Syncytin-1/Syncytin-2 Genes and Transcripts: How Noncoding RNAs May Affect Pregnancy in Patients with Systemic Lupus Erythematosus

Author:

Talotta Rossella1ORCID

Affiliation:

1. Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU “G. Martino”, via Consolare Valeria 1, 98124 Messina (ME), Italy

Abstract

Background: Patients with systemic lupus erythematosus (SLE) often suffer from obstetric complications not necessarily associated with the antiphospholipid syndrome. These events may potentially result from the reduced placental synthesis of the fusogenic proteins syncytin-1 and syncytin-2, observed in women with pregnancy-related disorders. SLE patients have an aberrant noncoding (nc)RNA signature that may in turn dysregulate the expression of syncytin-1 and syncytin-2 during placentation. The aim of this research is to computationally evaluate and characterize the interaction between syncytin-1 and syncytin-2 genes and human ncRNAs and to discuss the potential implications for SLE pregnancy adverse outcomes. Methods: The FASTA sequences of the syncytin-1 and syncytin-2 genes were used as inputs to the Ensembl.org library to find any alignments with human ncRNA genes and their transcripts, which were characterized for their tissue expression, regulatory activity on adjacent genes, biological pathways, and potential association with human disease. Results: BLASTN analysis revealed a total of 100 hits with human long ncRNAs (lncRNAs) for the syncytin-1 and syncytin-2 genes, with median alignment scores of 151 and 66.7, respectively. Only lncRNAs TP53TG1, TTTY14, and ENSG00000273328 were reported to be expressed in placental tissue. Dysregulated expression of lncRNAs TP53TG1, LINC01239, and LINC01320 found in this analysis has previously been described in SLE patients as well as in women with a high-risk pregnancy. In addition, some of the genes adjacent to lncRNAs aligned with syncytin-1 or syncytin-2 in a regulatory region might increase the risk of pregnancy complications or SLE. Conclusions: This is the first computational study showing alignments between syncytin-1 and syncytin-2 genes and human lncRNAs. Whether this mechanism affects syncytiotrophoblast morphogenesis in SLE females is unknown and requires further investigation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3