Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells

Author:

Mikra Chrysoula,Mitrakas AchilleasORCID,Ghizzani Virginia,Katsani Katerina R.,Koffa Maria,Koukourakis Michael,Psomas GeorgeORCID,Protti StefanoORCID,Fagnoni MaurizioORCID,Fylaktakidou Konstantina C.ORCID

Abstract

A set of arylazo sulfones, known to undergo N–S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking “in silico” calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference97 articles.

1. DNA binders in clinical trials and chemotherapy;Ali;Bioorg. Med. Chem.,2014

2. Challenging transcription by DNA-binding antitumor drugs;Portugal;Biochem. Pharmacol.,2018

3. Chemistry and biology of DNA-binding small molecules;Paul;Curr. Sci.,2012

4. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry;Sirajuddin;J. Photochem. Photobiol. B Biol.,2013

5. Metal-free artificial nucleases based on simple oxime and hydroxylamine scaffolds;Fernandes;Bioorg. Med. Chem. Lett.,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3