Thermoacoustic Imaging Using Single-Channel Data Acquisition System for Non-Invasive Assessment of Liver Microwave Ablation: A Feasibility Study

Author:

Song Ling1,Peng Wanting2,Lu Qiang1,Feng Lian1ORCID,Yang Zeqi3,Huang Lin3ORCID,Luo Yan1

Affiliation:

1. Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China

2. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

3. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Microwave ablation (MWA) plays a crucial role in non-surgical liver cancer treatment, but the existing efficacy evaluation tools lack the characteristics of being real-time, non-invasive, and efficient. As an emerging imaging technology, thermoacoustic imaging (TAI) has attracted extensive clinical attention for its excellent merits, which combine the advantages of high contrast in microwave imaging and high resolution in ultrasound imaging. Particularly, the application of a circular scanned single-channel data acquisition system maximizes the capture of thermoacoustic signals, thereby providing more comprehensive image information and rendering reconstructed images closer to reality. This study aimed to verify the feasibility of TAI in non-invasive evaluation of the efficacy of MWA on ex vivo porcine liver and in vivo rabbit liver. During the experiments, ultrasound is used to cross-verify the results of TAI to ensure the accuracy and reliability of the method. Additionally, by altering the thickness of porcine liver tissue to increase the distance (from 0 mm to 80 mm) between the horn antenna and the target (soy sauce tube), TAI is used to observe the change of the image signal-to-noise ratio to preliminarily explore the imaging depth of TAI. The results of ex and in vivo experiments can not only promote the clinical application of TAI, but also be expected to provide a more accurate and reliable efficacy assessment method for MWA in liver cancer treatment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3