Photobiomodulation Therapy through a Novel Flat-Top Hand-Piece Prototype Improves Tissue Regeneration in Amphioxus (Branchiostoma lanceolatum): Proposal of an Ethical Model for Preclinical Screening

Author:

Bozzo MatteoORCID,Pasquale ClaudioORCID,Cuccaro Francesco,Ferrando SaraORCID,Zekiy Angelina,Candiani SimonaORCID,Amaroli AndreaORCID

Abstract

Despite the literature providing compelling evidence for the medical efficacy of photobiomodulation (PBM) therapy, its consistency in terms of accuracy and standardization needs improving. Identification of new technology and reliable and ethical biological models is, therefore, a challenge for researchers working on PBM. We tested the reliability of PBM irradiation through a novel delivery probe with a flat-top beam profile on the regenerating amphioxus Branchiostoma lanceolatum. The caudalmost 9 ± 1 myotomes, posterior to the anus, were excised using a sterile lancet. Animals were randomly split into three experimental groups. In the control group, the beam area was bounded with the 635-nm red-light pointer (negligible power, <0.5 mW) and the laser device was coded to irradiate 810 nm and 0 W. In Group laser-1, the beam area was bounded with the same 635-nm red-light pointer and irradiated at 810 nm, 1 W in CW for 60 s, spot-size 1 cm2, 1 W/cm2, 60 J/cm2, and 60 J; irradiation was performed every day for two weeks. In Group laser-2, the beam area was bounded with the same 635-nm red-light pointer and irradiated at 810 nm, 1 W in CW for 60 s, spot-size 1 cm2, 1 W/cm2, 60 J/cm2, and 60 J; irradiation was performed on alternate days for four weeks. We observed that PBM improved the natural wound-healing and regeneration process. The effect was particularly evident for the notochord. Daily irradiation better supported the regenerative process.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3