Laser-Tracing Multi-Station Measurements in a Non-Uniform-Temperature Field

Author:

Chen Hongfang1,Zhang Ao1ORCID,Sun Mengyang1,Li Changcheng1,Wu Huan1ORCID,Liang Ziqi1ORCID,Shi Zhaoyao1

Affiliation:

1. Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing 100021, China

Abstract

Due to the increasing requirements for the improvement of the accuracy of large coordinate-measuring machines (CMMs), the laser-tracing multi-station measurement technology, as one of the advanced precision measurement technologies, is worth studying in depth in terms of its practical application for the compensation of errors in large CMMs. Since it is difficult to maintain a constant temperature of about 20 °C in the actual workshop under the influence of solar radiation and convective heat transfer, there is a gradient in the spatial temperature distribution, and the overall temperature changes with the influence of external factors with synchronous hysteresis, it is difficult for the actual calibration environment to meet the standard environmental requirements. Therefore, the influence of temperature and other environmental factors on the accuracy of laser ranging and large-scale CMM calibration should not be ignored. In this paper, on the basis of analyzing the temperature distribution and change rule of large CMM measurement space under different working conditions, the radial basis function (RBF) neural network algorithm was used to build a non-uniform-temperature field model, and based on this model and the measurement principle of the laser-tracking instrument, the method of laser tracking and interferometric ranging accuracy enhancement was put forward under a non-uniform-temperature field. Finally, based on the multi-station technique of laser tracing, an accurate solution for the volumetric error of large CMMs under the condition of non −20 °C ambient temperature was realized. Simulation results proved that compared with the traditional temperature-compensation method, the proposed method improved the measurement accuracy of the volumetric error of a large-scale CMM using laser-tracing multi-station technology in a non-uniform-temperature field by 33.5%. This study provides a new approach for improving the accuracy of laser-tracer multi-station measurement systems.

Funder

National Natural Science Foundation of China

National Major Scientific Research Instrument Development Project

Publisher

MDPI AG

Reference27 articles.

1. The development trend of coordinate measuring machine;Zhang;China Mech. Eng.,2000

2. Influence and compensation of CMM geometric errors on 3D gear measurements;Lin;Measurement,2020

3. Towards an effective identification strategy in volumetric error compensation of machine tools;Aguado;Meas. Sci. Technol.,2012

4. Influence of measurement noise and laser arrangement on measurement uncertainty of laser tracker multilateration in machine tool volumetric verification;Aguado;Precis. Eng.,2013

5. Algorithm for detecting volumetric geometric accuracy of nc machine tool by laser tracker;Wang;Chin. J. Mech. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3