Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia

Author:

Hu Songyan1,Sun Can1,Wu Xu1,Peng Yan1ORCID

Affiliation:

1. Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

In this paper, we proposed a polarization-independent terahertz surface plasmon resonance (SPR) biosensor based on an angular cyclic element structure. The biosensor has the advantages of high sensitivity detection and high stability against the polarization change of incident terahertz light. Based on the principle that the spatial longitudinal electric field of the SPR biosensor is nonlinear and sensitive to the dielectric constant of the sample, we theoretically proved that specific nonlinear response curves with certain saturating speed and amplitude can be formed to identify different samples. The biosensor was applied to identify Panax (notoginseng, ginseng and American ginseng, 48 samples each) and Paeonia (white peony and red peony, 48 samples each) with the accuracy of 95.8% and 94.4%, respectively. The standard deviations (SD) were less than 0.347% and 0.403%, respectively. Therefore, the polarization-independent terahertz biosensor can rapidly and accurately identify Panax species and Paeonia species. These results provide a new reference for rapid and low-cost identification of medicine species.

Funder

Key domestic scientific and technological cooperation projects in Shanghai

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3