Quantitative Evaluation of Gypsum-Salt Caprock Sealing Capacity Based on Analytic Hierarchy Process—A Case Study from the Cambrian in the Tarim Basin, Western China

Author:

Zhao Shan,Liu Hua,Zhu Yongfeng,Wang Shen,Yang Xianzhang

Abstract

Gypsum-salt caprock is one of the most important caprocks in petroliferous basins around the world. Its sealing capacity extremely affects hydrocarbon accumulation and distribution. However, there are numerous variables that affect caprock sealing performance, making a quantitative evaluation challenging. The analytic hierarchy process (AHP), which has the advantage of turning several influencing factors into multi-level single objectives, can be utilized in this context to quantify the weight of each element impacting caprock sealing capacity. As a result, using the Tarim Basin’s Cambrian as an example, this article quantitatively assessed the gypsum-salt caprock sealing capacity using AHP. The results show that factors affecting the sealing capacity of Cambrian gypsum-salt caprock in the Tarim Basin can be summarized into three major categories and nine sub-categories, including the lithology (rock assemblage type and lithology zoning), the thickness (total thickness of thick single layer, maximum thickness of thick single layer, total thickness, and ratio of caprock to stratum), and the mechanical properties (internal friction coefficient, compressive strength, peak strength). The sealing ability evaluation index (C) was created by applying AHP to quantify a number of different characteristics. The capacity of the caprock to seal is inversely correlated with the C-value. The value of C in the plane climbs consistently from Tabei to Tazhong and subsequently to the Bachu region, indicating a steady improvement in caprock sealing ability. Additionally, the evaluation’s findings are in line with how hydrocarbon accumulations are currently distributed. Furthermore, hydrocarbons are mostly distributed in subsalt and subsalt-dominated layers when C is greater than 2. On the contrary, hydrocarbons are mainly distributed in post-salt layers when C is less than 2. Furthermore, in areas affected by faults, hydrocarbons are favorably distributed in subsalt layers when C reaches 2, and fault activity is poor or strong in the early period and weak in the late period.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3