LCANet: A Lightweight Context-Aware Network for Bladder Tumor Segmentation in MRI Images

Author:

Wang Yixing1ORCID,Li Xiang2,Ye Xiufen1ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China

Abstract

Accurate segmentation of the lesion area from MRI images is essential for diagnosing bladder cancer. However, the precise segmentation of bladder tumors remains a massive challenge due to their similar intensity distributions, various tumor morphologies, and blurred boundaries. While some seminal studies, such as those using CNNs combined with transformer segmentation methods, have made significant progress, (1) how to reduce the computational complexity of the self-attention mechanism in the transformer while maintaining performance and (2) how to build a better global feature fusion process to improve segmentation performance still require further exploration. Considering the complexity of bladder MRI images, we developed a lightweight context-aware network (LCANet) to automatically segment bladder lesions from MRI images. Specifically, the local detail encoder generates local-level details of the lesion, the lightweight transformer encoder models the global-level features with different resolutions, the pyramid scene parsing module extracts high-level and multiscale semantic features, and the decoder provides high-resolution segmentation results by fusing local-level details with global-level cues at the channel level. A series of empirical studies on T2-weighted MRI images from 86 patients show that LCANet achieves an overall Jaccard index of 89.39%, a Dice similarity coefficient of 94.08%, and a Class pixel accuracy of 94.10%. These advantages show that our method is an efficient tool that can assist in reducing the heavy workload of radiologists.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3