Fractional-Order Variational Image Fusion and Denoising Based on Data-Driven Tight Frame

Author:

Zhao Ru1,Liu Jingjing1

Affiliation:

1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

Abstract

Multi-modal image fusion can provide more image information, which improves the image quality for subsequent image processing tasks. Because the images acquired using photon counting devices always suffer from Poisson noise, this paper proposes a new three-step method based on the fractional-order variational method and data-driven tight frame to solve the problem of multi-modal image fusion for images corrupted by Poisson noise. Thus, this article obtains fused high-quality images while removing Poisson noise. The proposed image fusion model can be solved by the split Bregman algorithm which has significant stability and fast convergence. The numerical results on various modal images show the excellent performance of the proposed three-step method in terms of numerical evaluation metrics and visual quality. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on image fusion with Poisson noise.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3