ELCT-YOLO: An Efficient One-Stage Model for Automatic Lung Tumor Detection Based on CT Images

Author:

Ji Zhanlin12ORCID,Zhao Jianyong1ORCID,Liu Jinyun1,Zeng Xinyi1,Zhang Haiyang3,Zhang Xueji4,Ganchev Ivan256ORCID

Affiliation:

1. Hebei Key Laboratory of Industrial Intelligent Perception, College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China

2. Telecommunications Research Centre (TRC), University of Limerick, V94 T9PX Limerick, Ireland

3. Department of Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China

4. School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China

5. Department of Computer Systems, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria

6. Institute of Mathematics and Informatics—Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria

Abstract

Research on lung cancer automatic detection using deep learning algorithms has achieved good results but, due to the complexity of tumor edge features and possible changes in tumor positions, it is still a great challenge to diagnose patients with lung tumors based on computed tomography (CT) images. In order to solve the problem of scales and meet the requirements of real-time detection, an efficient one-stage model for automatic lung tumor detection in CT Images, called ELCT-YOLO, is presented in this paper. Instead of deepening the backbone or relying on a complex feature fusion network, ELCT-YOLO uses a specially designed neck structure, which is suitable to enhance the multi-scale representation ability of the entire feature layer. At the same time, in order to solve the problem of lacking a receptive field after decoupling, the proposed model uses a novel Cascaded Refinement Scheme (CRS), composed of two different types of receptive field enhancement modules (RFEMs), which enables expanding the effective receptive field and aggregate multi-scale context information, thus improving the tumor detection performance of the model. The experimental results show that the proposed ELCT-YOLO model has strong ability in expressing multi-scale information and good robustness in detecting lung tumors of various sizes.

Funder

Science and Technology Ministry of China

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3