Abstract
This paper presents the modeling of an Fe–Ga energy harvester prototype, within a large range of values of operating parameters (mechanical preload, amplitude and frequency of dynamic load, electric load resistance). The simulations, based on a hysteretic Preisach-type model, employ a voltage-driven finite element formulation using the fixed-point technique, to handle the material nonlinearities. Due to the magneto–mechanical characteristics of Fe–Ga, a preliminary tuning must be performed for each preload to individualize the fixed point constant, to ensure a good convergence of the method. This paper demonstrates how this approach leads to good results for the Fe–Ga prototype. The relative discrepancies between experimental and computational values of the output power remain lower than 5% in the entire range of operating parameters considered.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献