Microstructure and Mechanical Properties of Al–Li Alloys with Different Li Contents Prepared by Selective Laser Melting

Author:

Shao Shuobing123ORCID,Liang Zhuoheng123ORCID,Yin Peng123ORCID,Li Xinyuan123,Zhang Yongzhong123

Affiliation:

1. National Engineering & Technology Research Center for Non-Ferrous Metals Composites, GRINM Group Corporation Limited, Beijing 101407, China

2. GRINM Metal Composites Technology Co., Ltd., Beijing 101407, China

3. General Research Institute for Nonferrous Metals, Beijing 100088, China

Abstract

Research on the development of new lightweight Al–Li alloys using a selective laser melting process has great potential for industrial applications. This paper reports on the development of novel aluminum–lithium alloys using selective laser melting technology. Al–Cu–Li–Mg–Ag–Sc–Zr pre-alloyed powders with lithium contents of 1 wt.%, 2 wt.% and 3 wt.%, respectively, were prepared by inert gas atomization. After SLM process optimization, the microstructure and mechanical properties of the as-printed specimens were investigated. The densifications of the three newly developed alloys were 99.51%, 98.96% and 92.01%, respectively. They all had good formability, with the lithium loss rate at about 15%. The as-printed alloy with 1% Li content presented good comprehensive properties, with a yield strength of 413 ± 16 MPa, an ultimate tensile strength of 461 ± 12 MPa, and an elongation of 14 ± 1%. The three alloys exhibited a layered molten pool stacking morphology and had a typical heterostructure. The columnar crystals and equiaxed fine grains were alternately arranged, and most of the precipitated phases were enriched at the grain boundaries. The change in Li content mainly affected the precipitation of the Cu-containing phase. When the Li content was 1 wt.%, the following occured: θ phase, T1 phase and TB phase. When Li increased to 2 wt.%, T1 and T2 phases precipitated together. When Li reaches 3 wt.%, δ’ phase precipitated with T2 phase. This study provides useful guidance for the future SLM forming of new crack-free and high-strength Al–Li alloys.

Funder

GRINM Metal Composites Technology Co., Ltd.

National Engineering & Technology Research Center for Non-ferrous Metal Matrix Composites, GRINM Group Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3