The Antioxidant Role of One-Carbon Metabolism on Stroke

Author:

Burgess Kassidy,Bennett Calli,Mosnier Hannah,Kwatra NehaORCID,Bethel Forrest,Jadavji Nafisa M.ORCID

Abstract

One-carbon (1C) metabolism is a metabolic network that is centered on folate, a B vitamin; it integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. This metabolic pathway also reduces levels of homocysteine, a non-protein amino acid. High levels of homocysteine are linked to increased risk of hypoxic events, such as stroke. Several preclinical studies have suggested that 1C metabolism can impact stroke outcome, but the clinical data are unclear. The objective of this paper was to review preclinical and clinical research to determine whether 1C metabolism has an antioxidant role on stroke. To accomplish the objective, we searched for publications using the following medical subject headings (MeSH) keywords: antioxidants, hypoxia, stroke, homocysteine, one-carbon metabolism, folate, methionine, and dietary supplementation of one-carbon metabolism. Both pre-clinical and clinical studies were retrieved and reviewed. Our review of the literature suggests that deficiencies in 1C play an important role in the onset and outcome of stroke. Dietary supplementation of 1C provides beneficial effects on stroke outcome. For stroke-affected patients or individuals at high risk for stroke, the data suggest that nutritional modifications in addition to other therapies could be incorporated into a treatment plan.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference90 articles.

1. Roles of Folate in Neurological Function;Murray,2017

2. Evaluation of homocysteine level as a risk factor among patients with ischemic stroke and its subtypes;Ashjazadeh;Iran. J. Med. Sci.,2013

3. Homocysteine, Ischemic Stroke, and Coronary Heart Disease in Hypertensive Patients

4. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: An overview

5. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis;McCully;Am. J. Pathol.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3