Chemical Composition Optimization of Biocompatible Non-Equiatomic High-Entropy Alloys Using Machine Learning and First-Principles Calculations

Author:

Zhou Gengzhu1,Zhang Zili1,Feng Renyao1ORCID,Zhao Wenjie1,Peng Shenyou1,Li Jia1,Fan Feifei2,Fang Qihong1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

2. Mechanical Engineering Department, University of Nevada, 1664 N Virginia St., Reno, NV 89551, USA

Abstract

Obtaining a suitable chemical composition for high-entropy alloys (HEAs) with superior mechanical properties and good biocompatibility is still a formidable challenge through conventional trial-and-error methods. Here, based on a large amount of experimental data, a machine learning technique may be used to establish the relationship between the composition and the mechanical properties of the biocompatible HEAs. Subsequently, first-principles calculations are performed to verify the accuracy of the prediction results from the machine learning model. The predicted Young’s modulus and yield strength of HEAs performed very well in the previous experiments. In addition, the effect on the mechanical properties of alloying an element is investigated in the selected Ti-Zr-Hf-Nb-Ta HEA with the high crystal symmetry. Finally, the Ti8-Zr20-Hf16-Nb35-Ta21 HEA predicted by the machine learning model exhibits a good combination of biocompatibility and mechanical performance, attributed to a significant electron flow and charge recombination. This work reveals the importance of these strategies, combined with machine learning and first-principles calculations, on the development of advanced biocompatible HEAs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3