Spatial Attention Modulates Neuronal Interactions between Simple and Complex Cells in V1

Author:

Zheng Zhiyan1,Hu Qiyi1,Bu Xiangdong1,Jiang Hongru1,Sui Xiaohong1,Li Liming1,Chai Xinyu1,Chen Yao1ORCID

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Visual perception is profoundly modulated by spatial attention, which can selectively prioritize goal-related information. Previous studies found spatial attention facilitated the efficacy of neuronal communication between visual cortices with hierarchical organizations. In the primary visual cortex (V1), there is also a hierarchical connection between simple (S) and complex (C) cells. We wonder whether and how spatial attention modulates neuronal communication within V1, especially for neuronal pairs with heterogeneous visual input. We simultaneously recorded the pairs’ activity from macaque monkeys when they performed a spatial-attention-involved task, then applied likelihood-based Granger causality analysis to explore attentional modulation of neuronal interactions. First, a significant attention-related decrease in Granger causality was found in S-C pairs, which primarily displayed in the S-to-C feedforward connection. Second, the interaction strength of the feedforward connection was significantly higher than that of the feedback under attend toward (AT) conditions. Although information flow did not alter as the attentional focus shifted, the strength of communications between target- and distractor-stimuli-covered neurons differed only when attending to complex cells’ receptive fields (RFs). Furthermore, pairs’ communications depended on the attentional modulation of neurons’ firing rates. Our findings demonstrate spatial attention does not induce specific information flow but rather amplifies directed communication within V1.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

STI 2030—Major Projects

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3