Synergistic Effect of QNZ, an Inhibitor of NF-κB Signaling, and Bone Morphogenetic Protein 2 on Osteogenic Differentiation in Mesenchymal Stem Cells through Fibroblast-Induced Yes-Associated Protein Activation

Author:

Huang Fei12ORCID,Wang Hai1,Zhang Ying2,Wei Guozhen1,Xie Yun1,Wu Gui13ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

2. Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China

3. Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China

Abstract

Biomaterials carrying recombinant human bone morphogenetic protein 2 (BMP2) have been developed to enhance bone regeneration in the treatment of bone defects. However, various reports have shown that in the bone repair microenvironment, fibroblasts can inhibit BMP2-induced osteogenic differentiation in mesenchymal stem cells (MSCs). Thus, factors that can target fibroblasts and improve BMP2-mediated osteogenesis should be explored. In this project, we focused on whether or not an inhibitor of the NF-κB signaling pathway, QNZ (EVP4593), could play a synergistic role with BMP2 in osteogenesis by regulating the activity of fibroblasts. The roles of QNZ in regulating the proliferation and migration of fibroblasts were examined. In addition, the effect of QNZ combined with BMP2 on the osteogenic differentiation of MSCs was evaluated both in vitro and in vivo. Furthermore, the detailed mechanisms by which QNZ improved BMP2-mediated osteogenesis through the modulation of fibroblasts were analyzed and revealed. Interestingly, we found that QNZ inhibited the proliferation and migration of fibroblasts. Thus, QNZ could relieve the inhibitory effects of fibroblasts on the homing and osteogenic differentiation of mesenchymal stem cells. Furthermore, biomaterials carrying both QNZ and BMP2 showed better osteoinductivity than did those carrying BMP2 alone both in vitro and in vivo. It was found that the mechanism of QNZ involved reactivating YAP activity in mesenchymal stem cells, which was inhibited by fibroblasts. Taken together, our results suggest that QNZ may be a candidate factor for assisting BMP2 in inducing osteogenesis. The combined application of QNZ and BMP2 in biomaterials may be promising for the treatment of bone defects in the future.

Funder

Fujian Provincial Health and Health Committee Young and Middle-aged Talents Training Program

Joint Funds for the innovation of Science and Technology, Fujian province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3