Mechanism Exploration of Amyloid-β-42 Disaggregation by Single-Chain Variable Fragments of Alzheimer’s Disease Therapeutic Antibodies

Author:

Fan Xing1,Xu Lipeng1ORCID,Zhang Jianhao1,Wang Yidan1,Wu Zirui1,Sun Wenjing1,Yao Xin1,Wang Xu1,Guan Shanshan2,Shan Yaming13ORCID

Affiliation:

1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China

2. College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun 130052, China

3. Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China

Abstract

Alzheimer’s disease (AD) is a specific neurodegenerative disease. This study adopts single-chain variable fragments (scFvs) as a potential immunotherapeutic precursor for AD. According to the remarkable effects of monoclonal antibodies, such as the depolymerization or promotion of Aβ42 efflux by Crenezumab, Solanezumab, and 12B4, it is attractive to prepare corresponding scFvs targeting amyloid-β-42 protein (Aβ42) and investigate their biological activities. Crenezumab-like scFv (scFv-C), Solanezumab-like scFv (scFv-S), and 12B4-like scFv (scFv-12B4) were designed and constructed. The thermal stabilities and binding ability to Aβ42 of scFv-C, scFv-S, and scFv-12B4 were evaluated using unfolding profile and enzyme-linked immunosorbent assay. As the results indicated that scFv-C could recognize Aβ42 monomer/oligomer and promote the disaggregation of Aβ42 fiber as determined by the Thioflavin-T assay, the potential mechanism of its interaction with Aβ42 was investigated using molecular dynamics analysis. Interactions involving hydrogen bonds and salt bonds were predicted between scFv-C and Aβ42 pentamer, suggesting the possibility of inhibiting further aggregation of Aβ42. The successfully prepared scFvs, especially scFv-C, with favorable biological activity targeting Aβ42, might be developed for a potentially efficacious clinical application for AD.

Funder

National Natural Science Foundation of China

Youth Program of the National Natural Science Foundation of China

Jilin Province Science and Technology Development Projects

Changchun City Science and Technology Development Projects

Jilin Province Science and Technology Development Plan Projects

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3