Meta-Analysis of Public RNA Sequencing Data Revealed Potential Key Genes Associated with Reproductive Division of Labor in Social Hymenoptera and Termites

Author:

Toga Kouhei12ORCID,Bono Hidemasa12ORCID

Affiliation:

1. Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan

2. Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan

Abstract

Eusociality in insects has evolved independently many times. One of the most notable characteristics of eusociality is the reproductive division of labor. In social insects, the reproductive division of labor is accomplished by queens and workers. Transcriptome analyses of queens and workers have been conducted for various eusocial species. However, the genes that regulate the reproductive division of labor across all or multiple eusocial species have not yet been fully elucidated. Therefore, we conducted a meta-analysis using publicly available RNA-sequencing data from four major groups of social insects. In this meta-analysis, we collected 258 pairs (queen vs. worker) of RNA-sequencing data from 34 eusocial species. The meta-analysis identified a total of 20 genes that were differentially expressed in queens or workers. Out of these, 12 genes have not previously been reported to be involved in the reproductive division of labor. Functional annotation of these 20 genes in other organisms revealed that they could be regulators of behaviors and physiological states related to the reproductive division of labor. These 20 genes, revealed using massive datasets of numerous eusocial insects, may be key regulators of the reproductive division of labor.

Funder

Center of Innovation for Bio-Digital Transformation (BioDX), a program on the open innovation platform for industry-academia co-creation

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference97 articles.

1. The Major Evolutionary Transitions;Smith;Nature,1995

2. Sociogenomics: Social Life in Molecular Terms;Robinson;Nat. Rev. Genet.,2005

3. An Evolutionary Perspective on Self-Organized Division of Labor in Social Insects;Duarte;Annu. Rev. Ecol. Evol. Syst.,2011

4. The Evolution of Eusociality;Anderson;Annu. Rev. Ecol. Syst.,1984

5. Molecular Evolutionary Analyses of Insect Societies;Fischman;Proc. Natl. Acad. Sci. USA,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3