Identification of Critical Pipes Using a Criticality Index in Water Distribution Networks

Author:

Marlim Malvin S.,Jeong Gimoon,Kang Doosun

Abstract

A water distribution network (WDN) is a critical infrastructure that must be maintained, ensuring a proper water supply to widespread customers. A WDN consists of various components, such as pipes, valves, pumps, and tanks, and these elements interact with each other to provide adequate system performance. If the elements fail due to internal or external interruptions, this may adversely impact water service to different degrees depending on the failed elements. To determine an appropriate maintenance priority, the critical elements need to be identified and mapped in the network. To identify and prioritize the critical elements (here, we focus on the pipes only) in the WDN, an element-based simulation approach is proposed, in which all the composing pipes of the WDN are reviewed one at a time. The element-based criticality is measured using several criticality indexes that are newly proposed in this study. The proposed criticality indexes are used to quantify the impacts of element failure to water service degradation. Here, four criticality indexes are developed: supply shortage (SS), economic value loss (EVL), pressure decline (PD), and water age degradation (WAD). Each of these indexes measures different aspects of the consequences, specifically social, economic, hydraulic, and water quality, respectively. The separate values of the indexes from all pipes in a network are then combined into a singular criticality value for assessment. For demonstration, the proposed approach is applied to four real WDNs to identify and prioritize the critical pipes. The proposed element-based simulation approach can be used to identify the critical components and setup maintenance scheduling of WDNs for preparedness of failure events.

Funder

Korea Environmental Industry and Technology Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3