Property Enhancement of Recycled Coarse Aggregate and Its Concrete under CO2-Accelerated Curing Treatment

Author:

Li Yingying1,Long Jia1,Chen Xiang1

Affiliation:

1. National Engineering Research Center for Inland Waterway Regulation, School of River and Ocean Engineering, Chongqing Jiaotong University, 66 Xuefu Road, Nan’an District, Chongqing 400074, China

Abstract

The poor properties of recycled coarse aggregate (RCA) and recycled coarse aggregate concrete (RCAC) are considered key constraints hindering the reuse of this waste resource in marine engineering. The CO2-based accelerated carbonation method, which utilizes the alkali aggregate properties of RCA to achieve CO2 uptake and sequestration while significantly enhancing its properties, has attracted widespread attention. However, the degree of improvement in the properties of RCA under different initial moisture conditions (IMCs) and aggregate particle sizes (APSs) after CO2-accelerated carbonation remains unclear. Moreover, the quantitative effect of carbonated recycled coarse aggregate (CRCA), which is obtained from RCA samples with the optimal initial moisture conditions, on the improvement of RCAC under optimal accelerated carbonation modification conditions still needs to be studied in depth. For this investigation, a CO2-accelerated carbonation experiment was carried out on RCA samples with different IMCs and APSs, and the variations in the properties of RCA with respect to its IMC and APS were assessed. The degree of accelerated carbonation modification of RCA under different IMCs and APSs was quantified, and the optimal initial moisture conditions for enhancing the properties of the RCA were confirmed. By preparing concrete specimens based on the natural coarse aggregate, RCA, and CRCA with the best initial moisture conditions (considering the same concrete–water proportion), the effect of CRCA on the workability, mechanical properties, and durability of the corresponding concrete specimen was determined. The findings of this study can be used to effectively promote the sustainable development of marine science and engineering in the future and contribute to global dual-carbon goals, which are of great practical significance and scientific value.

Funder

National Natural Science Foundations of China

Science Foundation of Chongqing Jiaotong University

Publisher

MDPI AG

Reference41 articles.

1. Synthesis of eco-sustainable seawater sea-sand geopolymer mortars from ternary solid waste: Influence of microstructure evolution on mechanical performance;Yang;Sustain. Mater. Technol.,2024

2. Spatio-temporal evolutionary characteristics of carbon emissions and carbon sinks of marine industry in China and their time-dependent models;Wu;Marine Policy,2022

3. Phase assemblance evolution during wet carbonation of recycled concrete fines;Shen;Cem. Concr. Res.,2022

4. Complementary use of thermogravimetric analysis and oven to assess the composition and bound CO2 content of recycled concrete aggregates;Kaddah;Dev. Built Environ.,2023

5. Accelerated carbonation technology for enhanced treatment of recycled concrete aggregates: A state-of-the-art review;Pu;Constr. Build. Mater.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3