QPCTL Affects the Daily Weight Gain of the F2 Population and Regulates Myogenic Cell Proliferation and Differentiation in Chickens

Author:

Ren TuanhuiORCID,Lin WujianORCID,Yang Xiuxian,Zhang Zihao,He Shizi,Li Wangyu,Li ZhuanjianORCID,Zhang XiquanORCID

Abstract

Molecular breeding can accelerate the process of animal breeding and improve the breeding efficiency. To date, many Indel molecular markers have been identified in livestock and poultry, but how Indels affect economic traits is not well understood. For molecular breeding, it is crucial to reveal the mechanism of action of Indels and to provide more accurate information. The purpose of this study was to investigate how the 52/224-bp multiallelic Indels of the chicken QPCTL promoter area affect the daily weight gain of chickens and the potential regulatory mechanism of the QPCTL gene. The analysis was conducted by association analysis, qPCR, dual-fluorescence assay and Western blotting. The results showed that Indels in the QPCTL promoter region were significantly associated with the daily weight gain in chickens and that QPCTL expression showed a decreasing trend in embryonic breast muscle tissues. Furthermore, QPCTL expression was significantly higher in breast muscle tissues of the AC genotype than in those of the AB and BB genotypes. Based on the transcriptional activity results, the pGL3-C vector produced more luciferase activity than pGL3-A and pGL3-B. In addition, overexpression of QPCTL promoted chicken primary myoblast (CPM) proliferation and inhibited differentiation. The results of this study suggest that Indels in the promoter region of the QPCTL gene may regulate the proliferation and differentiation of CPMs by affecting the expression of QPCTL, which ultimately affects the growth rate of chickens. These Indels have important value for the molecular breeding of chickens, and QPCTL can be used as a candidate gene to regulate and improve chicken growth and development.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3