Supplementing Diets with Agriophyllum squarrosum Reduced Blood Lipids, Enhanced Immunity and Anti-Inflammatory Capacities, and Mediated Lipid Metabolism in Tan Lambs

Author:

Jiao Dan,Liang Yanping,Zhou Shanshan,Wu Xiukun,Degen Abraham AllanORCID,Hickford Jonathan,Zhou HuitongORCID,Cong Haitao,Shi Xinxin,Ma Xiaofei,Yang Guo

Abstract

Agriophyllum squarrosum (sand rice), a widespread desert plant, possesses anti-hyperglycemic and anti-inflammatory properties, and has been used in traditional Chinese medicine for many years. However, its effects on ruminants are unknown. To fill this gap, we examined the effects of A. squarrosum on the immune and anti-inflammatory responses of lambs. A total of 23, 6-month-old Tan ewe-lambs (27.6 ± 0.47 kg) were divided into four groups and offered a basic diet (C—control), or a diet that contained 10%, 20%, or 30% A. squarrosum, on a dry matter basis, for 128 days. Serum concentrations of total cholesterol were lower (p = 0.004) in the 30% supplemented lambs than controls, while concentrations of high-density lipoprotein cholesterol were lower (p = 0.006) in the 10% and 20%, but not in 30% supplemented lambs than controls. Serum-cortisol concentrations were lower (p = 0.012) in the 30% supplemented lambs and free fatty acid concentrations were higher in the 10% and 20% supplemented lambs than in control lambs (p < 0.001). Supplementation with A. squarrosum decreased (p < 0.05) the area of adipocytes in subcutaneous adipose tissue, but there was no difference between the 20% and 30% diets. Conversely, the area in visceral adipose tissue (VAT) increased (p < 0.05), especially for the 10% and 20% supplemented diets. Supplementation with A. squarrosum also enriched immune and anti-inflammatory related and lipid and glucose-metabolic pathways and associated differentially expressed gene expressions in adipose tissue. A total of 10 differential triacylglycerol, 34 differential phosphatidylcholines and seven differential phosphatidylethanolamines decreased in the diet with 30% supplementation, when compared to the other diets. Finally, adipocyte-differentiation genes, and immune and inflammatory response-related gene expression levels decreased in lamb adipocytes cultured with an aqueous A. squarrosum extract. In conclusion, supplementing lamb diets with A. squarrosum reduced blood lipids, enhanced immunity and anti-inflammatory capacities, and mediated lipid metabolism in adipose tissue and adipocytes of Tan lambs. A level of approximately 10% is recommended, but further research is required to determine the precise optimal level.

Funder

Strategic Priority Research Program (A) of Chinese Academy of Sciences

Hundred Talents Program of Chinese Academy of Sciences

Study on the Haplotype Genetic Expression of ADRB3- Energy Metabolism Gene Group in the Xinjiang Sheep Breeding Population

Construction of Rural Revitalization Industry Technology Innovation Center and Demonstration Base in Yellow River Delta

the Special Funds for Scientific and Technological Innovation and Development in Gansu Province

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference70 articles.

1. Pharmacognostic Studies on Mongolian Medicinal Herbs Herba Agriophyllum;Qiang;Lishizhen Med. Mater. Med. Res.,2009

2. Gao, Q.A. (2002). The “grass seed” in Dunhuang literature is the “sand rice” examination. J. Dunhuang Stud., 43–44.

3. Comparison of Antioxidant Constituents of Agriophyllum squarrosum Seed with Conventional Crop Seeds;Xu;J. Food Sci.,2018

4. Evaluation on nutritional composition of Agriophyllum squarrosum of Tengger Desert;Wang;Sci. Technol. Food Ind.,2009

5. Genievskaya, Y., Abugalieva, S., Zhubanysheva, A., and Turuspekov, Y. (2017). Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan. BMC Plant Biol., 17.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3