Affiliation:
1. Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
2. Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
3. Division of Endocrinology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
Abstract
Background: Insulin resistance plays an important role in the development of post-transplantation diabetes mellitus (PTDM) in kidney transplant recipients (KTRs). Current methods for the direct determination of insulin resistance are complicated and invasive. Therefore, this study aimed to investigate the relevance of indirect insulin resistance indices in relation to the development of PTDM in KTRs. Methods: We included 472 stable outpatient KTRs without diabetes at baseline from a prospective cohort study. Four indirect insulin resistance indices, namely homeostasis model assessment–insulin resistance (HOMA-IR), visceral adiposity index (VAI), lipid accumulation product (LAP), and triglycerides–glucose (TyG) index, were assessed. We analyzed each measure using the receiver operating characteristic (ROC) curve for PTDM development. The optimal cut-off value for each parameter was determined using the Youden index. Results: After a median of 9.6 years (interquartile range (IQR) 6.6–10.2) of follow-up, 68 (14%) KTRs developed PTDM. In Cox regression analyses, all indirect insulin resistance indices associated with incident PTDM were independent of potential confounders. ROC curve was 0.764 (95% CI, 0.703–0.826) for HOMA-IR, 0.685 (95% CI, 0.615–0.757) for VAI, 0.743 (95% CI, 0.678–0.808) for LAP, and 0.698 (95% CI, 0.629–0.766) for TyG index, with respective optimal cut-off values of 2.47, 4.01, 87.0, and 4.94. Conclusions: Indirect insulin resistance indices can be used to predict incident PTDM in KTRs. In addition to HOMA-IR, insulin-free surrogates of insulin resistance might serve as useful methods to identify KTRs at risk of PTDM, thus obviating the necessity to measure insulin.
Funder
European Union’s Horizon 2020 research and innovation program