Effects of Cu Addition on Mechanical Behaviour, Microstructural Evolution and Anti-Corrosion Performance of TiAl-Based Intermetallic Alloy under Different Strain Rates

Author:

Kuo Cheng-HsienORCID,Chen Tao-HsingORCID,Zeng Ting-Yang

Abstract

TiAl-based intermetallic alloys are prepared with Cu concentrations of 3–5 at.% (atomic ratio). The mechanical properties and microstructural characteristics of the alloys are investigated under static and dynamic loading conditions using a material testing system (MTS) and split-Hopkinson Pressure Bar (SHPB), respectively. The electrochemical properties of the various alloys are then tested in Ringer’s solution. It is shown that the level of Cu addition significantly affects both the flow stress and the ductility of the samples. For Cu contents of 3 and 4 at.%, respectively, the flow stress and strain rate sensitivity increase at higher strain rates. Furthermore, for a constant strain rate, a Cu content of 4 at.% leads to an increased fracture strain. However, for the sample with the highest Cu addition of 5 at.%, the flow stress and fracture strain both decrease. The X-ray diffraction (XRD) patterns and optical microscopy (OM) images reveal that the lower ductility is due to the formation of a greater quantity of γ phase in the binary TiAl alloy system. Among all the specimens, that with a Cu addition of 4 at.% has the best anti-corrosion performance. Overall, the results indicate that the favourable properties of the TiAlCu4 sample stem mainly from the low γ phase content of the microstructure and the high α2 phase content.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3