In Silico, In Vitro, and In Vivo Evaluation of Caffeine-Coated Nanoparticles as a Promising Therapeutic Avenue for AML through NF-Kappa B and TRAIL Pathways Modulation

Author:

Siddique Muhammad Hamid1ORCID,Bukhari Sidra1,Khan Inam Ullah1,Essa Asiya1,Ali Zain1,Sabir Usama1,Ayoub Omiya1,Saadia Haleema1,Yaseen Muhammad2ORCID,Sultan Aneesa1ORCID,Murtaza Iram1ORCID,Kerr Philip G.3ORCID,Bhat Mashooq Ahmad4ORCID,Anees Mariam1

Affiliation:

1. Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. Institute of Chemical Sciences, University of Swat, Charbagh 19130, Pakistan

3. School of Dentistry and Medical Sciences, Charles Sturt University, Sydney, NSW 2678, Australia

4. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Background: Advancements in nanoscience have led to a profound paradigm shift in the therapeutic applications of medicinally important natural drugs. The goal of this research is to develop a nano-natural product for efficient cancer treatment. Methods and Results: For this purpose, mesoporous silica nanoparticles (MSNPs) were formulated, characterized, and loaded with caffeine to develop a targeted drug delivery system, i.e., caffeine-coated nanoparticles (CcNPs). In silico docking studies were conducted to examine the binding efficiency of the CcNPs with different apoptotic targets followed by in vitro and in vivo bioassays in respective animal models. Caffeine, administered both as a free drug and in nanomedicine form, along with doxorubicin, was delivered intravenously to a benzene-induced AML model. The anti-leukemic potential was assessed through hematological profiling, enzymatic biomarker analysis, and RT-PCR examination of genetic alterations in leukemia markers. Docking studies show strong inter-molecular interactions between CcNPs and apoptotic markers. In vitro analysis exhibits statistically significant antioxidant activity, whereas in vivo analysis exhibits normalization of the genetic expression of leukemia biomarkers STMN1 and S1009A, accompanied by the restoration of the hematological and morphological traits of leukemic blood cells in nanomedicine-treated rats. Likewise, a substantial improvement in hepatic and renal biomarkers is also observed. In addition to these findings, the nanomedicine successfully normalizes the elevated expression of GAPDH and mTOR induced by exposure to benzene. Further, the nanomedicine downregulates pro-survival components of the NF-kappa B pathway and upregulated P53 expression. Additionally, in the TRAIL pathway, it enhances the expression of pro-apoptotic players TRAIL and DR5 and downregulates the anti-apoptotic protein cFLIP. Conclusions: Our data suggest that MSNPs loaded with caffeine, i.e., CcNP/nanomedicine, can potentially inhibit transformed cell proliferation and induce pro-apoptotic TRAIL machinery to counter benzene-induced leukemia. These results render our nanomedicine as a potentially excellent therapeutic agent against AML.

Funder

King Saud University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3