A Systematic Model to Improve Productivity in a Transformer Manufacturing Company: A Simulation Case Study

Author:

Jou Yung-Tsan1ORCID,Lin Ming-Chang1,Silitonga Riana Magdalena2ORCID,Lu Shao-Yang1,Hsu Ni-Ying1

Affiliation:

1. Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan

2. Department of Industrial Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia

Abstract

The global economy’s slow recovery has led to an increased need for transformers in organizations in recent years. An optimal strategy for production line optimization is to enhance the allocation of staff at each workstation and increase the amount of operational equipment. The focus of this study is the investigation of the transformer production line. This study carried out a comprehensive examination of manufacturing area one, manufacturing area two, and manufacturing area three, respectively. The findings revealed that the case factory requires enhancements in the allocation of its workers. The simulation approach allows for the implementation of multi-scenario evaluation and adjustment, ensuring optimal utilization of resources in the enhanced production line, hence enhancing production efficiency and total productivity. Implementing both rotational shifts and night shifts in manufacturing area one enhances the overall production efficiency of the manufacturing area. By redistributing the workforce in area two, it proved feasible to manage the production capacity of a manufacturing area and maintain the operation of the gas-phase drying furnace. With regard to the final aspect, it is imperative to enhance the processing time of preprocessing goods in order to guarantee a consistent supply of the appropriate quantity of products. This will effectively minimize production line delays and enhance overall production efficiency. These enhancement strategies aid the manufacturing company in optimizing resource allocation to enhance production efficiency and productivity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3