Experimental Study on the Pre-Peak Mechanical and Seepage Characteristics of Granite

Author:

Zeng Xinyan1,Lin Wancang1,Chen Xinyi1,Zhou Qinglong1

Affiliation:

1. School of Resource and Safety, Central South University, Changsha 410083, China

Abstract

The Sanshandao Gold Mine is currently in the deep mining stage. The ground pressure on the surrounding rocks is gradually becoming more considerable, and at the same time, threatened by the overlying seawater, the possibility of mine water inrush accidents is increasing. In this study, the MTS815 rock triaxial seepage test system was employed for the triaxial compression testing and stress–seepage coupled testing of granite under different confining pressures. The results show that granite’s pre-peak mechanical evolution under different confining pressures is divided into four stages (the crack closure stage, linear elasticity stage, stable crack expansion stage, and unstable crack expansion stage). With the increase in the confining pressure, the crack initiation threshold, crack damage threshold, and peak threshold gradually increased, but the closure threshold had no corresponding change. Moreover, in the loading process, the permeability curve first decreased and then increased, and the confining pressure suppressed the peak permeability of granite. Finally, based on the test results, stress sensitivity analysis was carried out, and it was found that polynomials fit the relationship between permeability and effective stress better. Granite’s permeability showed strong stress sensitivity at medium confining pressures. The stress sensitivity of the permeability of granite decreased with increasing effective stress at medium and high confining pressures, while it tended to increase at low confining pressures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3