In Situ Biosynthesis of Photothermal Parasite for Fluorescence Imaging-Guided Photothermal Therapy of Tumors

Author:

Wang YaqiongORCID,Pan Haiyan,Meng Zhaowei,Zhang Cai

Abstract

Photothermal therapy (PTT) has been widely known as a promising therapeutic strategy for cancer treatment in recent decades. However, some organic and inorganic photothermal agents exhibit shortcomings including potential long-term toxicity and lack of biodegradability. Biocompatible extracts from plants and animals provide several alternatives for the reformation of photothermal agents. Bio-inspired products still have inherent problems such as low accumulation in tumors, easy diffusion, and fast elimination. Herein, we aim to develop a biocompatible photothermal agent with tumor enrichment. Enlightened by “parasitized snails”, in situ biosynthesis of photothermal agents and fluorescence imaging-guided PTT are achieved with the assistance of alginate–calcium–genipin (ACG) hydrogel. ACG hydrogel is a mixture of alginate (ALG), calcium (Ca), and genipin (GP). Given that the crosslinking product of GP and protein displays fluorescent/photothermal features, the constructed ACG hydrogel can gradually react with the tumor and then “light up” and “ignite” the tumor under specific light excitation. The ACG hydrogel can be seen as a photothermal parasite, eventually leading to the death of tumor. The photothermal therapeutic effects of ACG hydrogel reacting with tumors are successfully proven in vivo. The naturally derived GP and ALG ensure the biosafety of the ACG hydrogel-based bio-application. This work is another successful practice of nature-inspired methodological strategy for in situ biosynthesis of the photothermal agent.

Funder

Construction Project of Cancer Precision Diagnosis and Drug Treatment Technology

Tianjin Key Medical Discipline (Specialty) Construction Project

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3