Critical Aspects of Various Techniques for Synthesizing Metal Oxides and Fabricating Their Composite-Based Supercapacitor Electrodes: A Review

Author:

Ansari Mohd ZahidORCID,Seo Kang-Min,Kim Soo-Hyun,Ansari Sajid AliORCID

Abstract

Supercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial. Metal oxides (MOs) and their composites are the most widely used pseudocapacitive SC electrode materials. The basic requirements for fabricating high-performance SC electrodes include synthesizing and/or chemically modifying unique conducting nanostructures, optimizing a heterostructure morphology, and generating large-surface-area electroactive sites, all of which predominantly rely on various techniques used for synthesizing MO materials and fabricating MO- and MO-composite-based SC electrodes. Therefore, an SC’s background and critical aspects, the challenges associated with the predominant synthesis techniques (including hydrothermal and microwave-assisted syntheses and chemical-bath and atomic-layer depositions), and resulting electrode electrochemical performances should be summarized in a convenient, accessible report to accelerate the development of materials for industrial SC applications. Therefore, we reviewed the most pertinent studies on these synthesis techniques to provide insight into the most recent advances in synthesizing MOs and fabricating their composite-based SC electrodes as well as to propose research directions for developing MO-based electrodes for applications to next-generation SCs.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3