Evaluating and Visualizing the Contribution of ECG Characteristic Waveforms for PPG-Based Blood Pressure Estimation

Author:

Ma GangORCID,Chen Yuhang,Zhu Wenliang,Zheng Lesong,Tang Hui,Yu Yong,Wang LirongORCID

Abstract

Non-invasive continuous blood pressure monitoring is of great significance for the preventing, diagnosing, and treating of cardiovascular diseases (CVDs). Studies have demonstrated that photoplethysmogram (PPG) and electrocardiogram (ECG) signals can effectively and continuously predict blood pressure (BP). However, most of the BP estimation models focus on the waveform features of the PPG signal, while the peak value of R-wave in ECG is only used as a time reference, and few references investigated the ECG waveforms. This paper aims to evaluate the influence of three characteristic waveforms in ECG on the improvement of BP estimation. PPG is the primary signal, and five input combinations are formed by adding ECG, P wave, QRS complex, T wave, and none. We employ five common convolutional neural networks (CNN) to validate the consistency of the contribution. Meanwhile, with the visualization of Gradient-weighted class activation mapping (Grad-CAM), we generate the heat maps and further visualize the distribution of CNN’s attention to each waveform of PPG and ECG. The heat maps show that networks pay more attention to the QRS complex and T wave. In the comparison results, the QRS complex and T wave have more contribution to minimizing errors than P wave. By separately adding P wave, QRS complex, and T wave, the average MAE of these networks reaches 7.87 mmHg, 6.57 mmHg, and 6.21 mmHg for systolic blood pressure (SBP), and 4.27 mmHg, 3.65 mmHg, and 3.73 mmHg, respectively, for diastolic blood pressure (DBP). The results of the experiment show that QRS complex and T wave deserves more attention and feature extraction like PPG waveform features in the continuous BP estimation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECG Data Visualization: Combining the power of Grafana and InfluxDB;2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS);2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3