Improving Support Vector Regression for Predicting Mechanical Properties in Low-Alloy Steel and Comparative Analysis

Author:

Che Zhongyuan12ORCID,Peng Chong12

Affiliation:

1. School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China

2. Jiangxi Research Institute, Beihang University, Nanchang 330096, China

Abstract

Low-alloy steel is widely employed in the aviation industry for its exceptional mechanical properties. These materials are frequently used in critical structural components such as aircraft landing gear and engine mounts, where a high strength-to-weight ratio is crucial for optimal performance. However, the mechanical properties of low-alloy steel are influenced by various components and their compositions, making identification and prediction challenging. Accurately predicting these mechanical properties can significantly reduce the development time of new alloy steel, lower production costs, and offer valuable insights for design analysis. support vector regression (SVR) is known for its superior learning and generalization capabilities. However, optimizing SVR performance can be challenging due to the significant impact of the penalty factor and kernel parameters. To address this issue, a hybrid method called SMA-SVR is proposed, which combines the Slime Mould Algorithm (SMA) with SVR. This hybrid approach aims to efficiently and accurately predict two crucial mechanical parameters of low-alloy steel: tensile strength and 0.2% proof stress. Detailed descriptions of the modeling processes and principles that are involved in the hybrid method are provided. Furthermore, three other popular hybrid models for comparison are introduced. To evaluate the performance of these models, four statistical measures are utilized: Mean Absolute Error, Root Mean Square Error, R-Squared, and computational time. Using data from the NIMS database and from material tests conducted on a universal testing machine, experiments were carried out to compare the performance of these models. The results indicate that SMA-SVR outperforms the other methods in terms of accuracy and computational efficiency.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Scientific Instrument and Equipment Development Projects of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3