Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun-Protection Compounds

Author:

Ashkenazi Doron YehoshuaORCID,Figueroa Félix L.ORCID,Korbee NathalieORCID,García-Sánchez Marta,Vega JuliaORCID,Ben-Valid Shoshana,Paz Guy,Salomon EitanORCID,Israel Álvaro,Abelson Avigdor

Abstract

Marine macroalgae are considered an untapped source of healthy natural metabolites and their market demand is rapidly increasing. Intertidal macroalgae present chemical defense mechanisms that enable them to thrive under changing environmental conditions. These intracellular chemicals include compounds that can be used for human benefit. The aim of this study was to test cultivation protocols that direct seaweed metabolic responses to enhance the production of target antioxidant and photoprotective biomaterials. We present an original integrated multi-trophic aquaculture (IMTA) design, based on a two-phase cultivation plan, in which three seaweed species were initially fed by fish effluents, and subsequently exposed to various abiotic stresses, namely, high irradiance, nutrient starvation, and high salinity. The combined effect of the IMTA’s high nutrient concentrations and/or followed by the abiotic stressors enhanced the seaweeds’ content of mycosporine-like amino acids (MAAs) by 2.3-fold, phenolic compounds by 1.4-fold, and their antioxidant capacity by 1.8-fold. The Sun Protection Factor (SPF) rose by 2.7-fold, and the chlorophyll and phycobiliprotein synthesis was stimulated dramatically by an order of magnitude. Our integrated cultivation system design offers a sustainable approach, with the potential to be adopted by emerging industries for food and health applications.

Funder

Ministry of Health, Israel

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3