Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes

Author:

Ogawa Eisaku,Edamitsu Tomohiro,Ohmori Hidetaka,Kohu Kazuyoshi,Kurokawa Mineo,Kiyonari HiroshiORCID,Satake Masanobu,Okuyama RyuheiORCID

Abstract

The Runt-related transcription factor (Runx) family has been suggested to play roles in stem cell regulation, tissue development, and oncogenesis in various tissues/organs. In this study, we investigated the possible functions of Runx1 and Runx3 in keratinocyte differentiation. Both Runx1 and Runx3 proteins were detected in primary cultures of mouse keratinocytes. Proteins were localized in the nuclei of undifferentiated keratinocytes but translocated to the cytoplasm of differentiated cells. The siRNA-mediated inhibition of Runx1 and Runx3 expression increased expression of keratin 1 and keratin 10, which are early differentiation markers of keratinocytes. In contrast, overexpression of Runx1 and Runx3 suppressed keratin 1 and keratin 10 expression. Endogenous Runx1 and Runx3 proteins were associated with the promoter sequences of keratin 1 and keratin 10 genes in undifferentiated but not differentiated keratinocytes. In mouse skin, the inhibition of Runx1 and Runx3 expression by keratinocyte-specific gene targeting increased the ratios of keratin 1- and keratin 10-positive cells in the basal layer of the epidermis. On the other hand, inhibition of Runx1 and Runx3 expression did not alter the proliferation capacity of cultured or epidermal keratinocytes. These results suggest that Runx1 and Runx3 likely function to directly inhibit differentiation-induced expression of keratin 1 and keratin 10 genes but are not involved in the regulation of keratinocyte proliferation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms;International Journal of Molecular Sciences;2023-03-15

2. Editorial: Special Issue, “Molecular Advances in Skin Diseases”;International Journal of Molecular Sciences;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3