AI and Financial Fraud Prevention: Mapping the Trends and Challenges Through a Bibliometric Lens

Author:

Moura Luiz1ORCID,Barcaui Andre1ORCID,Payer Renan2ORCID

Affiliation:

1. Faculdade de Administração e Ciências Contábeis (FACC), Universidade Federal do Rio de Janeiro (UFRJ), Av. Pasteur, 250–sala 242, Praia Vermelha, Urca, Rio de Janeiro 22290-240, Brazil

2. Departamento de Engenharia de Produção (TEP), Universidade Federal Fluminense (UFF), Rua Passo da Pátria, 156, Bloco D–sala 306, Campus da Praia Vermelha, Niterói 24210-240, Brazil

Abstract

This study systematically reviews academic research on artificial intelligence (AI) in financial fraud prevention. Employing a bibliometric approach, we analyzed 137 peer-reviewed articles published between 2015 and 2025, sourced from Scopus, Web of Science, and ScienceDirect. Using Bibliometrix, we mapped the field’s intellectual structure, collaboration patterns, and thematic clusters. Research interest has surged since 2019, led mainly by China and India, though the literature is mostly technical, with limited social science engagement. Three main themes emerged: AI-based fraud detection models, blockchain and fintech integration, and big data analytics. Despite growing output, international collaboration and focus on ethical, regulatory, and organizational issues remain limited. These insights provide a foundation for advancing both research and practical AI-driven fraud mitigation.

Publisher

MDPI AG

Reference79 articles.

1. Artificial intelligence and machine learning in finance: A bibliometric review;Ahmed;Research in International Business and Finance,2022

2. Online payment fraud detection model using machine learning techniques;Almazroi;IEEE Access,2023

3. Bibliometria: Evolução histórica e questões atuais;Em Questão,2006

4. Bibliometrix: An R-tool for comprehensive science mapping analysis;Aria;Journal of Infometrics,2017

5. Transparency and privacy: The role of explainable AI and federated learning in financial fraud detection;Awosika;IEEE Access,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3