Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy

Author:

Tao Kai12,Xu Jingbo3,Zhang Di3,Zhang Aimin12,Su Guang12,Zhang Jishan3

Affiliation:

1. School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453003, China

2. Engineering Research Center for Metallic Materials Modification Technology of Henan Province, Henan Institute of Technology, Xinxiang 453003, China

3. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The effect of final thermomechanical treatment (FTMT) on the mechanical properties and microstructure of a T-Mg32(Al Zn)49 phase precipitation hardened Al-5.8Mg-4.5Zn-0.5Cu alloy was studied. The as-cold rolled aluminum alloy samples were subjected sequentially to solid solution treatment, pre-deformation, and two-stage aging treatment. Vickers hardness was measured during the aging process under various parameters. Tensile tests were conducted on the representative samples based on the hardness results. Microstructural characteristics were analyzed via transmission electron microscopy and high-resolution transmission electron microscopy. The conventional T6 process was also carried out for comparison. The hardness and tensile strength are increased evidently by the FTMT process for the Al-Mg-Zn-Cu alloy, while the ductility is adversely affected to a small extent. The precipitation at the T6 state consists of a coherent Guinier–Preston zone and T″ phase in the form of intragranular, fine, and spherical particles, while a semi-coherent T′ phase appears after the FTMT process as a new constituent. The distribution of dislocation tangles and isolated dislocations is another feature of FTMT samples. Enhanced precipitation hardening and dislocation strengthening account for the improved mechanical performance of FTMT samples.

Funder

National Natural Science Foundation of China

Science and Technology Project of Henan Province

Doctoral Research Fond of Henan Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3