MAM-E: Mammographic Synthetic Image Generation with Diffusion Models

Author:

Montoya-del-Angel Ricardo1ORCID,Sam-Millan Karla1,Vilanova Joan C.2ORCID,Martí Robert1ORCID

Affiliation:

1. Computer Vision and Robotics Institute (ViCOROB), University of Girona, 17004 Girona, Spain

2. Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004 Girona, Spain

Abstract

Generative models are used as an alternative data augmentation technique to alleviate the data scarcity problem faced in the medical imaging field. Diffusion models have gathered special attention due to their innovative generation approach, the high quality of the generated images, and their relatively less complex training process compared with Generative Adversarial Networks. Still, the implementation of such models in the medical domain remains at an early stage. In this work, we propose exploring the use of diffusion models for the generation of high-quality, full-field digital mammograms using state-of-the-art conditional diffusion pipelines. Additionally, we propose using stable diffusion models for the inpainting of synthetic mass-like lesions on healthy mammograms. We introduce MAM-E, a pipeline of generative models for high-quality mammography synthesis controlled by a text prompt and capable of generating synthetic mass-like lesions on specific regions of the breast. Finally, we provide quantitative and qualitative assessment of the generated images and easy-to-use graphical user interfaces for mammography synthesis.

Funder

Erasmus+: Erasmus Mundus Joint Master’s Degree (EMJMD) scholarship

Ministerio de Ciencia e Innovación of Spain

Government of Catalonia

Publisher

MDPI AG

Reference36 articles.

1. Diffusion models in medical imaging: A comprehensive survey;Kazerouni;Med. Image Anal.,2023

2. Müller-Franzes, G., Niehues, J.M., Khader, F., Arasteh, S.T., Haarburger, C., Kuhl, C., Wang, T., Han, T., Nebelung, S., and Kather, J.N. (2022). Diffusion Probabilistic Models beat GANs on Medical Images. arXiv.

3. Diffusion Models Beat GANs on Image Synthesis;Dhariwal;Advances in Neural Information Processing Systems,2021

4. Dorjsembe, Z., Odonchimed, S., and Xiao, F. (2022). Three-Dimensional Medical Image Synthesis with Denoising Diffusion Probabilistic Models. Med. Imaging Deep Learn., Available online: https://openreview.net/forum?id=Oz7lKWVh45H.

5. Denoising Diffusion Probabilistic Models;Ho;Advances in Neural Information Processing Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3