Corrosion Behavior of Ni-Cr Alloys with Different Cr Contents in NaCl-KCl-MgCl2

Author:

Lei Peng12,Zhou Lizhen12,Zhang Yu12,Wang Fuli12,Li Qinzhe12,Liu Jiangyan12,Xiang Xueyun12,Wu Hang12ORCID,Wang Wen13,Wang Fuhui12

Affiliation:

1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China

2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

3. Institute of Metals, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

This study investigates the corrosion behavior of Ni-Cr binary alloys, including Ni-10Cr, Ni-15Cr, Ni-20Cr, Ni-25Cr, and Ni-30Cr, in a NaCl-KCl-MgCl2 molten salt mixture through gravimetric analysis. Corrosion tests were conducted at 700 °C, with the maximum immersion time reaching up to 100 h. The corrosion rate was determined by measuring the mass loss of the specimens at various time intervals. Verifying corrosion rates by combining mass loss results with the determination of element dissolution in molten salts using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Detailed examinations of the corrosion products and morphology were conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Micro-area elemental analysis on the corroded surfaces was performed using an energy dispersive spectrometer (EDS), and the elemental distribution across the corrosion cross-sections was mapped. The results indicate that alloys with lower Cr content exhibit superior corrosion resistance in the NaCl-KCl-MgCl2 molten salt under an argon atmosphere compared to those with higher Cr content; no corrosion products were retained on the surfaces of the lower Cr alloys (Ni-10Cr, Ni-15Cr). For the higher Cr alloys (Ni-20Cr, Ni-25Cr, Ni-30Cr), after 20 h of corrosion, a protective layer was observed in certain areas. The formation of a stable Cr2O3 layer in the initial stages of corrosion for high-Cr content alloys, which reacts with MgO in the molten salt to form a stable MgCr2O4 spinel structure, provides additional protection for the alloys. However, over time, even under argon protection, the MgCr2O4 protective layer gradually degrades due to chloride ion infiltration and chemical reactions at high temperatures. Further analysis revealed that chloride ions play a pivotal role in the corrosion process, not only facilitating the destruction of the Cr2O3 layer on the alloy surfaces but also possibly accelerating the corrosion of the metallic matrix through electrochemical reactions. In conclusion, the corrosion behavior of Ni-Cr alloys in the NaCl-KCl-MgCl2 molten salt environment is influenced by a combination of factors, including Cr content, chloride ion activity, and the formation and degradation of protective layers. This study not only provides new insights into the corrosion resistance of Ni-Cr alloys in high-temperature molten salt environments but also offers significant theoretical support for the design and optimization of corrosion-resistant alloy materials.

Funder

hangwu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3