Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry

Author:

Jiang Huanhuan1,Gao Xiang1ORCID,Gao Yong1,Liu Yatao1ORCID

Affiliation:

1. Scientific Horizons Consulting, Irvine, CA 92617, USA

Abstract

The E-cigarette has been promoted as an alternative nicotine delivery device with potentially fewer toxicant emissions. The objective of this review is to summarize the current knowledge on the particle size distribution (PSD) of e-cigarette emissions and to analyze the knowledge gaps between existing particle size measurements and the vision toward harm reduction from e-cigarette use. Here, we focus on firstly describing the physical parameters used to characterize PSD, followed by comparing particle size measurement approaches, investigating the factors that impact the PSD of e-cigarette mainstream aerosols, and conclude by linking size distribution to the respiratory dosimetry by demonstrating the modeling results of particle deposition in the respiratory tract. This review calls for a harmonized testing protocol to conduct inter-comparisons and further understand e-cigarette particle sizes. Among the influencing factors investigated, puff topography, operation power, flavorings, PG/VG ratio, and nicotine strength impose a substantial impact on the PSD, but the underlying mechanisms have not yet been fully investigated. The effects brought by the type of device refill and nicotine are yet inconclusive due to lack of evidence. Coil aging has no significant impact on the PSD of e-cigarette aerosols within the coil lifetime. Lastly, while computational models of particle deposition have been adopted to profile the deposition of e-cigarette mainstream emissions, existing models have limited applicability and generality when dealing with e-cigarette aerosols that have high volatility and hygroscopicity, which can dynamically evaporate or grow during the transport process. Additionally, the size-dependent chemical composition (e.g., nicotine and harmful and potentially harmful constituents) of e-cigarette aerosols is unknown, impeding the understanding of the health effects of e-cigarette use. Therefore, it is essential for future studies to bridge these knowledge gaps and unveil the mechanisms determining PSD and respiratory deposition.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3