Effects of Post-UV/Ozone Treatment on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors

Author:

Lee Hyeonju1,Kim Dongwook1,Shin Hyunji2ORCID,Bae Jin-Hyuk34ORCID,Park Jaehoon1

Affiliation:

1. Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea

2. Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea

3. School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

4. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

To realize oxide semiconductor-based complementary circuits and better transparent display applications, the electrical properties of p-type oxide semiconductors and the performance improvement of p-type oxide thin-film transistors (TFTs) are required. In this study, we report the effects of post-UV/ozone (O3) treatment on the structural and electrical characteristics of copper oxide (CuO) semiconductor films and the TFT performance. The CuO semiconductor films were fabricated using copper (II) acetate hydrate as a precursor material to solution processing and the UV/O3 treatment was performed as a post-treatment after the CuO film was fabricated. During the post-UV/O3 treatment for up to 13 min, the solution-processed CuO films exhibited no meaningful change in the surface morphology. On the other hand, analysis of the Raman and X-ray photoemission spectra of solution-processed CuO films revealed that the post-UV/O3 treatment induced compressive stress in the film and increased the composition concentration of Cu–O lattice bonding. In the post-UV/O3-treated CuO semiconductor layer, the Hall mobility increased significantly to approximately 280 cm2 V−1 s−1, and the conductivity increased to approximately 4.57 × 10−2 Ω−1 cm−1. Post-UV/O3-treated CuO TFTs also showed improved electrical properties compared to those of untreated CuO TFTs. The field-effect mobility of the post-UV/O3-treated CuO TFT increased to approximately 6.61 × 10−3 cm−2 V−1 s−1, and the on-off current ratio increased to approximately 3.51 × 103. These improvements in the electrical characteristics of CuO films and CuO TFTs can be understood through the suppression of weak bonding and structural defects between Cu and O bonds after post-UV/O3 treatment. The result demonstrates that the post-UV/O3 treatment can be a viable method to improve the performance of p-type oxide TFTs.

Funder

Basic Science Research Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3